Surface spin-glass behavior in La_{2/3}Sr_{1/3}MnO_3 nanoparticles

T. Zhu, B. G. Shen, J. R. Sun, H. W. Zhao, and W. S. Zhan
State Key Laboratory for Magnetism, Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China

(Received 9 November 2000; accepted for publication 24 April 2001)

The low-temperature magnetic and transport properties of La_{2/3}Sr_{1/3}MnO_3 nanoparticles have been investigated. It is found that a surface spin-glass behavior exists in La_{2/3}Sr_{1/3}MnO_3 nanoparticles, which undergo a magnetic transition to a frozen state below 45 K. The low-temperature surface spin-glass behavior exists even at the highest field used (H = 50 kOe). Moreover, the spin-glass-like transition disappears for particles above 50 nm. In addition, the suppressed low-field magnetoresistance (LFMR) observed at low temperature for nanosized La_{2/3}Sr_{1/3}MnO_3 is obviously lower than the expected upper limit of LFMR, 1/3, for polycrystalline manganites, which is proposed to arise from the higher-order tunneling through the insulating spin-glass-like surface layers. © 2001 American Institute of Physics. [DOI: 10.1063/1.1379597]

Magnetic nanoparticles have been a subject of intense research in the past decade because their unique magnetic properties make them very appealing from both the theoretical and technological points of view.1–4 One of the most controversial issues is the study of surface spin disorder or spin-glass behavior in the magnetic nanosized oxides. Some recent examples can be found in ball-milled CoFe_2O_4 (Ref. 2), NiFe_2O_4 (Ref. 3), and chemically precipitated γ-Fe_2O_3 (Ref. 4).

In the present work, we have studied the low-temperature magnetic and transport properties of doped manganite, La_{2/3}Sr_{1/3}MnO_3 nanoparticles, in particular the surface spin-glass behavior of the particles. The half-metallic perovskite manganites, such as La_{2/3}Sr_{1/3}MnO_3, are of great interest due to their colossal magnetoresistance effect. Recently, a good deal of progress to improve the low-field magnetoresistance (MR) response has been made for the polycrystalline samples,5–9 indicative of the promising candidates for the application in magnetoresistive devices. As a consequence, many investigations of the grain size effect on the magnetotransport or magnetic properties for manganites have also been presented. For example, an improved temperature dependence of MR has been presented in the nanosized La_{2/3}Sr_{1/3}MnO_3 formed by sol–gel processing.10 The high-field MR studies on ceramic La_{2/3}Sr_{1/3}MnO_3 as a function of the grain size suggest a noncollinear surface layer in granular La_{2/3}Sr_{1/3}MnO_3.11 In our previous letter, we have reported the superparamagnetic behavior of the La_{2/3}Ca_{1/3}MnO_3 nanoparticles synthesized by mechanical milling.12 But until now, the magnetic properties of nanosized manganites have not been exhaustively reported. In this letter, a surface spin-glass behavior of the nanosized La_{2/3}Sr_{1/3}MnO_3 has been carefully investigated. Moreover, the magnetotransport of the samples is also discussed on the basis of such novel magnetic properties.

The La_{2/3}Sr_{1/3}MnO_3 samples were prepared by a citric–gel process.13 The grain sizes of samples were directly obtained by scanning electron micrograph. The average grain size D of granular La_{2/3}Sr_{1/3}MnO_3 is about 25 nm to 1.5 μm when sintered at 600 to 1300 °C, respectively. Magnetic properties of the samples have been measured using a commercial superconducting quantum interference device in the temperature range from 5 to 400 K and in applied magnetic fields up to 50 kOe. Magnetotransport have been measured using a standard four-probe dc method.

Figure 1 shows the temperature dependence of magnetization in the zero-field-cooled (ZFC) and field-cooled (FC) processes with an applied low field of 500 Oe for the nanosized La_{2/3}Sr_{1/3}MnO_3 (with mean sizes around 25 nm). Similar to our previous results for nanosized La_{2/3}Ca_{1/3}MnO_3 (Ref. 12), it can be seen that the ZFC curve exhibits a typical blocking process for the superparamagnetic particles with the blocking temperature at T_B ≈ 75 K. A more important feature is that the FC curve reveals the existence of a sudden increase in magnetization below T_F ≈ 45 K related, as we will see later, with the onset of the freezing process of the surface spin-glass layer for the nanosized La_{2/3}Sr_{1/3}MnO_3. This characteristic is much clearer in a careful measurement of the FC branch (inset of Fig. 1). A similar feature can also be seen in γ-Fe_2O_3 nanoparticles4 and such spin-glass-like behavior is
denoted as a surface effect. This is to say the moments in the surface layer can freeze below T_F and align with the direction of moments in the core under a FC process. Thus, the magnetization exhibits a sudden increase below T_F.

Figure 2 shows that the irreversibility in magnetization remains below 45 K up to the highest field used ($H = 50 \text{kOe}$) in ZFC–FC processes. This feature supports the existence of the surface spin-glass behavior in the La$_{2/3}$Sr$_{1/3}$MnO$_3$ nanoparticles because the field is very high (up to 50 kOe in our experiment) when compared with those typically used in the spin-glass bulks (few tens of Oe). Further support of the existence of the surface spin-glass behavior in the nanosized La$_{2/3}$Sr$_{1/3}$MnO$_3$ comes from the high-field relaxation processes in alternating fields after a ZFC process. The measurements were made by first cooling in zero field, then ramping the applied field to +50 kOe and then measuring every 30 s for 3600 s, ramping the field to −50 kOe, and measuring again for 3600 s. Finally, the field was ramped back to +50 kOe and measured again for 3600 s.\footnote{The inset of Fig. 2 shows moment versus total elapsed time during this procedure. Absolute values of the moment are plotted on an expanded scale in order to compare +50 kOe and −50 kOe curves. Notice that an upward creep in the moment and subsequent iterations with positive and negative fields also result in continually higher values of magnetization over time during this procedure.}

The measurements were made by first cooling in zero field, then ramping the applied field to +50 kOe and then measuring every 30 s for 3600 s, ramping the field to −50 kOe, and measuring again for 3600 s. Finally, the field was ramped back to +50 kOe and measured again for 3600 s.\footnote{The inset of Fig. 2 shows moment versus total elapsed time during this procedure. Absolute values of the moment are plotted on an expanded scale in order to compare +50 kOe and −50 kOe curves. Notice that an upward creep in the moment and subsequent iterations with positive and negative fields also result in continually higher values of magnetization over time during this procedure.}

The measurements were made by first cooling in zero field, then ramping the applied field to +50 kOe and then measuring every 30 s for 3600 s, ramping the field to −50 kOe, and measuring again for 3600 s. Finally, the field was ramped back to +50 kOe and measured again for 3600 s.\footnote{The inset of Fig. 2 shows moment versus total elapsed time during this procedure. Absolute values of the moment are plotted on an expanded scale in order to compare +50 kOe and −50 kOe curves. Notice that an upward creep in the moment and subsequent iterations with positive and negative fields also result in continually higher values of magnetization over time during this procedure.}

Figure 3 shows the grain size dependence of low-field FC magnetization for La$_{2/3}$Sr$_{1/3}$MnO$_3$, indicating that the spin-glass-like transition disappears with the increase of grain size. The high-field irreversibility is also strongly dependent on the particle size and has completely disappeared for the particles above 50 nm (when sintered above 800 °C as seen from the inset of Fig. 3). In other words, the surface layer is thinner with the increase in grain size, and then the surface effect also cannot be measured. It is also worth mentioning that the critical size of disappearance of surface spin-glass behavior for La$_{2/3}$Sr$_{1/3}$MnO$_3$ grains is larger than for other nanosized magnetic oxides.\footnote{Moreover, the surface spin-glass behavior in La$_{2/3}$Sr$_{1/3}$MnO$_3$ nanoparticles can be independent of the actual Mn$^{4+}$ content in our samples because it only changes minimally for the Mn$^{4+}$ content in the samples annealing from 600 to 800 °C. Considering that the Mn$^{3+}$–Mn$^{4+}$ double-exchange mechanism is mainly responsible for the magnetism and conduction of the doped manganite La$_{2/3}$Sr$_{1/3}$MnO$_3$, the origin of the surface spin-glass layers formation in the La$_{2/3}$Sr$_{1/3}$MnO$_3$ nanoparticles may be due to the existence of broken bounds at the surface and the translational symmetry breaking of the lattice, generating randomness in the double-exchange interactions. Hence, the Mn environment at the surface is not the same as that inside the grains, inducing disordered spins at the grain surface. In other words, a core-shell type structure can be proposed: the core is metallic and FM and the shell is insulating and spin disordering. Although it is difficult to directly assert that disorder is confined in a well delimited surface layer or a progressive disorder process from the inner part of the particles to the surface, the core-shell structure model is suitable for the La$_{2/3}$Sr$_{1/3}$MnO$_3$ nanoparticles and consistent with the results of temperature dependence of FC magnetization (Fig. 1) and relaxation process of magnetization in altering fields (Fig. 2). Moreover, the numerical calculation in Ref. 3 also suggests such a core-shell structure in the nanomagnetic oxides. The existence of a distorted structure at the surface of the manganite nanoparticles has also been indirectly supported by the observation of a surface phonon,\cite{14} which was seen from the IR spectra for La$_{2/3}$Ca$_{1/3}$MnO$_3$ samples with small grain size.

To assess the nature of resistivity and relevant intergrain tunneling MR, we measured the temperature and magnetic field dependence of resistivity for La$_{2/3}$Sr$_{1/3}$MnO$_3$ with different grain sizes. Figure 4 shows the temperature dependence of the normalized zero field resistivity $R(T)/R(300 \text{K})$ for La$_{2/3}$Sr$_{1/3}$MnO$_3$ with varying grain size D. The abrupt observed in the low-temperature resistance for nanosized La$_{2/3}$Sr$_{1/3}$MnO$_3$ indicates an insulating-like barrier in the nanosized La$_{2/3}$Sr$_{1/3}$MnO$_3$, due to the damage of the double-exchange mechanism in the disordered interfacial region. Moreover, the insulating-like barrier of our samples becomes...
higher with a decrease in grain sizes and the details will be published elsewhere.

Figure 5 shows the magnetic field dependence of the conductivity \(\sigma(H) \) at 5 K for La\(_{2/3}\)Sr\(_{1/3}\)MnO\(_3\) with varying grain size \(D \), normalized by the zero field value \(\sigma_0 \). For all samples, \(\sigma(H) \) is quite linear with an applied field in the high field region (\(H > 0.5 \) T), and the slope of the field dependence increases monotonically with the decrease of \(D \). Furthermore, our results indicate that the general characteristic of linear dependence of \(\sigma(H) \) with an applied field in the high-field region appears to be independent of not only Curie temperature, \(T_C \) (Ref. 15), but also grain size \(D \), for polycrystalline manganites. The inset of Fig. 5 shows the grain size dependence of the low-field magnetoconductivity (LFMC) at 5 K for La\(_{2/3}\)Sr\(_{1/3}\)MnO\(_3\), which is defined by the extrapolation towards zero field of the initial drop of the high-field dependence of the conductivity \(\sigma(H)/\sigma_0 \). It is clear that the LFMC of 25 nm La\(_{2/3}\)Sr\(_{1/3}\)MnO\(_3\) is 0.187, which is obviously lower than the general upper limit value of 1/3, for polycrystalline manganites.\(^{15}\) Similar results can be seen in the milled nanosized La\(_{2/3}\)Sr\(_{1/3}\)MnO\(_3\).\(^{11}\) Also from the high-field MR in milled samples, a noncollinear surface layer was proposed. However, our magnetic results give direct evidence for the existence of spin-glass or spin disorder layers at the surface of nanosized manganites.

Very different from classical tunneling mechanisms in FM metal–insulator systems,\(^{16}\) the intergran conductivity is dominated by a second-order tunneling process,\(^{15}\) where the \(e_g \) electron tunnels through surficial spin sites at the grain boundary in the polycrystalline manganites and the spin of the hopping electron is aligned with the local \(S \) moment during the conduction process. The upper limit for the conductivity rise just after saturation is 1/3, which is independent of \(T_C \). Notice that such second-order tunneling is the simplest spin–flip process arising from a single interfacial spin site. In other words, the second-order tunneling should only be available for the narrow interface boundary in the \(\mu \)-sized manganites where the thickness of the grain boundary with structural disorder is estimated to be of the order of 1 nm.\(^{6}\) However, the temperature dependence of resistance indicates that the insulating-like barriers become higher with decreasing of grain size (Fig. 4), thus, the thickness of the grain boundary is also enlarged. Hence higher-order tunneling should be considered when the second-order tunneling process of \(e_g \) electron, from grain 1 to the boundary state then grain 2, are broken in the case of the enlarged grain boundary for the nanosized samples. This is to say that the extra inelastic tunneling may dominate and the LFMC is suppressed considering that extra spin–flip effect arises from the disordered spin sites in the spin-glass-like insulating surface layers in nanosized La\(_{2/3}\)Sr\(_{1/3}\)MnO\(_3\). When the surface spin-glass behavior disappears with the increase of grain size or decrease of thickness of the grain boundary (as shown in Fig. 3), the second-order tunneling should dominate and the LFMC increases to about 1/3.

This project was supported by NSFC and the State Key Project of Fundamental Research of MOST (G1998061300).
