The pH Rule for Fabricating Composite CoCu Nanowire Arrays

Xiaoxu Liu,1 Jianling Zhao,1 Yangxian Li,1 Shifeng Xu,2 Zhiyong Zhu,2 Jinglan Chen,2 and Guangheng Wu2
1School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
2State Key Laboratory for Magnetism, Institute of Physics Chinese Academy of Sciences, Beijing 100080, P. R. China

(Received October 23, 2006; CL-061245; E-mail: ghwu@aphy.iphy.ac.cn)

A series of Co1-xCu x (x = 0.05–0.70) composite nanowire arrays have been electrodeposited in alumina templates. An apparent pH value rule for nanowire phase and composition has been found. Based on it, composite nanowires can be obtained and the composition becomes more controllable. In the composite nanowires, the cubic and hexagonal structures coexisted. The specific magnetic properties, coercivity and squareness of the nanowires were apparently preceding to those in single phase nanowires.

In the investigation of magnetic nanowire arrays,1,2 more and more ferromagnetic--nonmagnetic alloy systems, including CoCu, have been reported for exhibiting special magnetic characters.3,4 For CoCu nanowires, most studies mainly focus on Co/Cu multilayer,3,4 or the face-centered cubic (fcc) single phase,3,5 and very few literature has been found on the fabrication and characterization of composite CoCu nanowires. The magnetic properties of the composite Co-based nanowire should be much better than the single phase nanowires, because more boundaries and grain surfaces can improve the effective anisotropy and enhance the magnetic coercivity.

In this paper, a series of CoCu electrodeposition experiments have been carried out under the different pH values and potentials. We found that the structure and the composition dependences exhibit a strong pH value rule: 1) the nanowires with wider composition range can be prepared by using a moderate pH value of 3.3; 2) using this pH value, the nanowires are of composition with hexagonal close packed (hcp) and fcc structures. Due to containing rich phase boundaries, the magnetic properties of the nanowire arrays apparently precede to those in single phase nanowires.

Table 1. The composition (Co:Cu) and structure of deposited CoCu nanowires at different pH values and depositing potentials

<table>
<thead>
<tr>
<th>Potential/V</th>
<th>pH 3.1</th>
<th>pH 3.3</th>
<th>pH 3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1.0</td>
<td>71:29 (hcp)</td>
<td>38:62 (fcc&hcp)</td>
<td>30:70 (fcc)</td>
</tr>
<tr>
<td>−1.1</td>
<td>77:23 (hcp)</td>
<td>49:51 (fcc&hcp)</td>
<td>42:58 (fcc)</td>
</tr>
<tr>
<td>−1.2</td>
<td>84:16 (hcp)</td>
<td>60:40 (fcc&hcp)</td>
<td>46:54 (fcc)</td>
</tr>
<tr>
<td>−1.3</td>
<td>90:10 (hcp)</td>
<td>75:25 (fcc&hcp)</td>
<td>53:47 (fcc)</td>
</tr>
<tr>
<td>−1.4</td>
<td>95:5 (hcp)</td>
<td>87:13 (fcc&hcp)</td>
<td>65:35 (fcc)</td>
</tr>
</tbody>
</table>

In a large composition range of x = 0.05–0.70 and monotonously increases with the increase of the depositing potential. The fact that Cu rich samples (for example Co0.30Cu0.70) still can be deposited in these rich Co2+ solutions implies that the depositing rate of Cu is much higher than that of Co. This result was also reported in previous works.3,5

Comparing to the potential, however, the Cu depositing rate is more sensitive to the pH values. At pH 3.1, the copper concentration ranged in 5–29% which is a Co-rich composition, and at pH 3.5, it ranges in 35–70% turning to Cu-rich side. Therefore, a moderate pH value, pH 3.3 provides a good condition for covering a wide range of Cu content of 13–62%, as shown in Table 1, and thus the Cu concentration becomes more controllable.

The structures of all nanowire arrays have been examined by XRD, as also listed in Table 1. It can be seen that, for relatively low pH of 3.1, the samples formed as hcp structure. For high pH of 3.5, the arrays were dominated by fcc CoCu alloy.

Based on the fact that the single hcp or fcc structures are supported by using pH 3.1 and 3.5, respectively, one may believe that the composite phase with fcc and hcp can be obtained by using a moderate condition of pH value. At pH 3.3 is taken, a composite phase, hcp plus fcc structures have been obtained in overall Co/Cu range from 87:13 to 38:62 as shown in Table 1. It should be noted that the composite nanowires have a wide composition range even covered those of single phase samples. Therefore, we may conclude that the results in Table 1 indicate an apparent pH value rule: contrasting to the usage for lower or higher pH values to producing Co- or Cu-rich composition and single phase, the optimized pH value of 3.3 supports the nanowires depositing in a composite phase and additionally, in a wider composition range. This result can be attributed to that the pH value strongly affects the depositing rate of Cu2+, which further dominates the overall composition and the structure of the nanowires. This effect has also been observed in the works on pure Co nanowires.2

Figure 1 shows the detail XRD results of Co1−xCu x nanowire arrays prepared under pH 3.3 condition. For all samples, hcp Co(100) peak can be clearly observed, which indicates the hcp Co always exists in nanowires. For Co-rich sample of Co0.3Cu0.7, only (100) peak of hcp Co can be observed. This
The increase of the overall content of Cu. in these nanowires. The portion of CoCu and Cu increases with that three phases, hcp Co, fcc CoCu and elemental fcc Cu coexist alloy) and a very important condition to affect the structure of nanowires. Magnetizations of the array samples have been measured to reveal the composite effect to magnetic properties. Figure 2 shows the comparison of the magnetic properties between the single phase samples and the composite ones. These two kinds of sample cover the same Co–Cu composition ranges and have the same diameter/length, but the composite samples show the apparently improved results: the peak values of the coercivity $H_c = 1400$ Oe and the squareness $M_r/M_s = 91\%$, about three times higher than those of single phase samples. This should be attributed to the existence of the composite phase, hcp plus fcc structures with much more phase boundaries which enhance the domain pinning in the nanowires and increase the demagnetization field.

Composite CoCu nanowires have been successfully electrodeposited by using an optimized pH value. We found that, comparing to the depositing potential, the pH value has much stronger influence on dominating the composition and structures than the other depositing conditions. An apparent pH rule has been concluded. Based on it, the composite nanowires with the structure of hcp and fcc phase and a quite large composition range can be obtained. Their magnetic properties apparently precede to those in the single phase samples.

This work was supported by the CNNSF Grant No. 50471056, and the CNNSF Grant No. 50472034.

References