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We derive a simple formalism of vertex corrections for the tunneling probability of an electron due to
nonspecular scattering. Predictions of the model in terms of the barrier thickness dependence of the resistance
and oscillatory tunneling magnetoresistance �TMR� are in excellent agreement with experiment. We show that
the TMR is directly linked to the vertex corrections. Thus, reducing the nonspecular scattering within the
barrier layer is crucial for increasing the TMR. Applying this model to the analysis of the temperature depen-
dence of TMR yields a temperature dependent interface scattering rate.
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I. INTRODUCTION

Magnetic tunnel junctions consisting of ferromagnet elec-
trodes and an insulating barrier are a special type of tunnel
junctions extensively studied for their tunneling magnetore-
sistance �TMR� effect.1–6 The two spin channels in a mag-
netic tunnel junction, usually called the majority- and the
minority-spin channels as determined by the electron spin
directions in the electrodes, contribute different tunneling
currents and can be manipulated by applying an external
magnetic field. This feature leads to giant tunneling
magnetoresistance4–6 and have significant technological im-
plications.

In this paper, we exploit this feature of magnetic tunnel
junctions to study the details of tunneling process not acces-
sible in nonmagnetic tunnel junctions, in particular, the non-
specular �k� nonconserving� scattering inside the tunnel bar-
rier and on the barrier-electrode interfaces. Traditional
models4,7,8 of tunnel junctions of planar geometry all assume
specular transmission, i.e., that the electron momentum par-
allel to the junction plane, k�, is always conserved in the
tunneling process. Vertex corrections due to impurity or de-
fect scattering inside the barrier layer have only been consid-
ered for specific scattering events.9 No general theory has
been developed for the vertex corrections.

Here, we present a simple linear model for the vertex
corrections. This model will help solve two of the longstand-
ing puzzles in the study of magnetic tunnel junctions. One is
the discrepancy between theory and experiment on the thick-
ness dependence of the TMR. The theory4 predicts an in-
crease of the TMR with the barrier thickness because the
antiparallel resistance RAP increases faster with the barrier
thickness than the parallel resistance RP. Experiments show
that the two resistances increase at the same rate with the
barrier thickness so the TMR is essentially a constant. The
second puzzle is the source of the oscillatory TMR6,10 as a
function of barrier thickness. By using our model, we show
that in the presence of vertex corrections, conduction through
all tunneling channels decreases with the barrier thickness at
the same rate as the dominant channel. The interference term
also decreases at this rate. By combining with the first-

principles calculations, we obtain excellent agreement with
recent measurements of the barrier thickness dependence of
the resistance, TMR, and the resistance oscillation. By using
our model, we also extract a temperature dependence of the
interface scattering rate from measurements of epitaxial
junctions.5,11

We first compare the experimental results to first-
principles calculations without including any defect scatter-
ing in Sec. II, which highlights the discrepancies discussed
above. In Sec. III, we derive the master equation for our
model. The master equation is then used to study the thick-
ness dependence of the resistance in Sec. IV, the interference
of evanescent waves and oscillatory TMR in Sec. V, and,
finally, the interface scattering and the temperature depen-
dence in Sec. VI.

II. BARRIER THICKNESS DEPENDENCE WITHOUT
DEFECT SCATTERING

Before we present the theoretical model for nonspecular
tunneling, let us first examine the first-principles theory for
specular tunneling in the absence of any defect scattering.
This serves two purposes. First, by comparing the first-
principles results with experimental measurements, it moti-
vates the subsequent model for diffuse scattering. Second,
the first-principles calculation will also produce parameters
that will be used later in the new model.

The first-principles calculation uses the layer Korringa–
Kohn–Rostoker �layer KKR� code.12 In this calculation, the
electrode layers of Fe are fixed at the experimental lattice
constant of 2.866 Å and the in-plane MgO lattice constant
�along the �100� axis� is �2 times larger or 4.053 Å. The
out-of-plane MgO lattice spacing �along �001�� is 2.21 Å,
which is the experimental value.6 The Fe-O distance, atomic
spheres, and the empty sphere in the interfacial Fe layer are
the same as in Ref. 4.

First, we calculate the complex band structure at the
Fermi energy of the Fe electrodes for a bulk MgO lattice
built by using the self-consistent potential of the middle
MgO layer of a Fe /6MgO /Fe tunnel junction. The complex
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band calculation yields �0=2.92 nm−1 for the �1 band at k�

=0. This number will be used as the base line decay rate of
the tunnel wave functions in the analysis below.

The total tunneling conductance of the Fe /MgO /Fe tun-
nel junction is calculated for both P �Fe electrode moments
aligned parallel to each other� and AP �Fe electrode moments
aligned antiparallel to each other� configurations for MgO
thicknesses from 4 atomic layers up to 20 atomic layers. The
integration over k� uses 8256 k points in 1 /8 of the two-
dimensional Brillouin zone �2DBZ�. The results in terms of
the sheet resistance as a function of MgO thickness t are
plotted in Fig. 1. In this plot, the base line exponential factor
exp�2�0t� is removed from all data sets in order to facilitate
a detailed comparison.

It is clear that neither RP nor RAP depends on the MgO
thickness as a simple exponential. This result is consistent
with a previous work.13 To understand this, we invoke a

simple model14 of an isotropic complex band at the �̄ point,
which gives the conductance for each spin channel in the
form,

G = �A
e2

h

1

�2��2�
0

�

e−2t�k�
2+�0

2
2�k�dk� , �1�

where A is the area of the sample and � is a parameter
determined by the metal electrodes and the contact. This
equation directly works for the majority-spin channel in RP.
By neglecting the contribution from the minority-spin chan-
nel, we find

RPA =
8�h

�Pe2

e2�0t

1

t2 +
2�0

t

. �2�

By using �P as the only fitting parameter, this result fits the
first-principles calculation of RP very well, as shown in Fig.
1, except for the first two points where the minority-spin
channel still contributes significantly to the total conduc-
tance.

For the AP configuration, because the �1 band at �̄ point
cannot enter the opposite electrode, we modify the contribu-
tion to the conductance from k� by a factor of 1
−exp�−k�

2d�,

GAP = �APA
e2

h

1

�2��2�
0

�

e−2t�k�
2+�0

2
�1 − e−k�

2d�2�k�dk� . �3�

By integrating and assuming that �0
2d�1, we find

RAPA =
4�h

�APe2

t2 + �0d

�0
2d

e2�0t. �4�

With two fitting parameters �AP and d, this fits the first-
principles calculation of RAP very well for large MgO thick-
nesses. At small thicknesses, the disagreement comes from
the interface resonance states that significantly contribute to
the AP conductance for thin MgO barriers.

The first-principles results are compared to two experi-
ments in Fig. 1. The agreement for RP is surprisingly good,
especially considering that there are no adjustable parameters
in the first-principles calculation. This agreement demon-
strates two points. First, the nonspecular scattering seems to
have little effect on RP. This may be fortuitous and will be
discussed in more detail in later sections. Second, the local
density approximation �LDA� produces decay wave vectors
at the Fermi energy that are in excellent agreement with ex-
periments. In other words, the band gap error in the LDA
does not affect the calculated tunneling current in the linear
response regime. This is consistent with an earlier result.14

The significantly larger resistance in experimental measured
samples for MgO thickness smaller than 1.5 nm is due to
increased diffusive scattering rates in these samples, as we
will show in later sections.

The experiments disagree with the first-principles calcu-
lation of RAP by more than an order of magnitude. This dif-
ference arises from diffusive scattering from defects inside
the barrier and is not included in the first-principles calcula-
tion. We will develop a model for this type of scattering in
the next section.

III. DERIVATION OF THE MASTER EQUATION

Our starting point is a crystalline epitaxial magnetic tun-
nel junction. The effect of defect scattering is introduced
through scattering terms into the steady-state equation of
motion, a master equation, for the electron density. This mas-
ter equation is derived as the following. A specular tunneling
wave function at the Fermi energy within the barrier region
0�z� t, where t is the barrier thickness, takes the form,

	�r� = �
n

Cn	n�r� , �5�

for r= �x ,y ,z� and where 	n�r� is the wave function of a
single tunneling channel labeled by n, which includes both
the transverse wave vector k� and the band labels. The for-
ward tunneling wave function 	n�r� is

	n�r� = 
n�x,y��e−�nz + Bne�n�z−t�� , �6�

where the weak oscillatory dependence of 
n�x ,y� on z on
the atomic scale is omitted, �n is the decay wave vector, and
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FIG. 1. �Color online� Sheet resistance of an Fe /MgO /Fe tunnel
junction as a function of MgO thickness t scaled by exp�−2�0t�.
First-principles calculation �open red circle, RP; filled red circle,
RAP� is compared to two experiments �open blue diamond, RP from
Ref. 6; filled blue diamond, RAP from Ref. 6; magenta plus, RP from
Ref. 10; magenta cross, RAP from Ref. 10�. The solid curves are fits
to first-principles results using Eqs. �2� and �4�.
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t is the thickness of the barrier. The backward tunneling
wave function for the same channel is

	̄n�r� = 
n�x,y��e�n�z−t� + B̄ne−�nz� . �7�

The wave functions of different channels are orthogonal,
	


n
*�x ,y�
n��x ,y�dxdy=A�nn�, where A is the area of the

sample. The linear density of the tunneling electron at the
Fermi energy is

��z� =
1

A
� 
	�r�
2dxdy = �

n


Cn
2
e−�nz + Bne�n�z−t�
2.

�8�

With diffuse scattering, the coefficients Cn become z depen-
dent. In addition, there is also a diffusive reflection contribu-
tion. We have

��z� = �
n

�n�z� + �
n

�̄n�z� , �9�

where the electron density for a single tunneling channel n is
defined as

�n�z� = �
Cn�z�
2�
e−�nz + Bne�n�z−t�
2, �10�

and where the angle bracket indicates a configurational av-
erage over the impurity scattering. Note that in Eqs. �9� and
�10�, the phases of the coefficients Cn�z� do not affect the
charge density.

To derive the master equation for �n�z�, we consider a
distribution of randomly placed point scatterers, similar to
the model of free electrons with random point scatterers,15

within a thin slice of space between planes z=z0 and z=z1
=z0+� inside a thick barrier. The scatterers are described by
the random scattering potentials Vm��r−rm�. Later, we will
invoke a configurational average such that

�Vm� = 0 �11�

and

�VmVm�� = V2�mm�. �12�

We write the total wave function as

�r� = �
n

Cn�z�	n�r� + �
n

C̄n�z�	̄n�r� . �13�

The relative phase factors in Cn�z� between different tunnel-
ing channels will be randomized through the configurational
average. This average also yields Eq. �9� from ��z�
= 1

A 	�
�r�
2�dxdy. The effects of the random point scatterers
are expressed through the Lippmann–Schwinger equation,

�r� = �0��r� + �
z0�zm�z1

G�0��r,rm�Vm�rm� , �14�

where the superscript �0� denotes the wave function and the
Green’s function when there are no scatterers between z0
�z�z1. Note that �0� and G�0� still contain effects of scat-
tering by defects inside the barrier but outside the thin slice
of space z0�z�z1 that we have cut out. For �0�, the coef-

ficients Cn
�0� and C̄n

�0� are constants of z,

�0��r� = �
n

Cn
�0�	n�r� + �

n

C̄n
�0�	̄n�r� . �15�

The retarded Green’s function can be written in terms of
an expansion by using the forward �	n� and backward �	̄n�
tunneling wave functions,

G�0��r,r�� = �
n

Sn	̄n�r�	n�r�� , z � z�

�
n

Sn	̄n�r��	n�r� , z � z�,� �16�

where Sn are constants to ensure the proper normalization of
the singularities in the Green’s function. In one dimension,
the coefficient Sn is the inverse of the Wronskian between the
two basis functions, and is independent of the position z at
which the Wronskian is calculated. In particular, we note that
when the two basis functions are both propagating waves,
Sn=2iktn, where tn is the transmission amplitude, and for real
tn, Sn is imaginary. The total wave function is

�r� = �0��r� + �
n

Sn	̄n�r� �
z�zm�z1

	n�rm�Vm�rm�

+ �
n

Sn	n�r� �
z0�zm�z

	̄n�rm�Vm�rm� . �17�

We first consider the specular part of the wave function,
i.e., the wave function including only the “scatter-out” con-
tribution. For this purpose, Eq. �17� can be applied to the
wave functions of individual channels, n�r�. We assume the
case of thick barriers for which the transmission T�1; there-
fore, Bn�1 and the reflected waves in Eq. �6� can been omit-
ted. Consequently, the second term on the right hand side of
Eq. �17� is a higher order term of � and therefore can also be
dropped. Thus, at z=z0, we have n�x ,y ,z0�=n

�0��x ,y ,z0�. At
z=z1, we take the configurational average over the wave
function, keeping the second order terms in V, and find

�n�r�� = n
�0��r� + V2 �

n�n�

Sn�Sn�	n��r� �
z0�zm�z

	̄n��rm�

�	n��rm�	̄n��rm�n
�0��rm� . �18�

In the limit of �→0, this leads to a scatter-out term for the
density,

d�n�z�
dz

= − �2�n + Pn��n�z� , �19�

where

Pn = −
2V2

A
Re �

n�

SnSn�e
−��n+�n��t� 
n

2�x,y�
n�
2 �x,y�dxdy ,

�20�

and we used �n�z0�=�n
�0��z0�. We also replaced the summa-

tion over m by a volume integral. Because � is small, the
integration over z simply yields a factor of �. Note that Sn, as
normalization constants in Eq. �16�, contain exponential
thickness dependences such that Sne−�nt should be indepen-
dent of thickness. Pn is usually positive. This is certainly true
in one dimension when Sn is imaginary. There are cases
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where Pn can be negative. These correspond to resonant tun-
neling through impurities and are not considered here. There-
fore, below, we will limit our discussion to positive Pn.

To derive the “scatter-in” contribution, i.e., the vertex cor-
rections, we cannot use the Lippmann–Schwinger equation
for individual channels. The total wave function, however,
still satisfies the Lippmann–Schwinger equation �Eq. �17��.
Again, at z=z0, n�x ,y ,z0�=n

�0��x ,y ,z0� and thus �n�z0�
=�n

�0��z0�. At z=z1,

�x,y,z1� = �0��x,y,z1�

+ �
n

Sn	n�x,y,z1� �
z0�zm�z1

	̄n�rm�Vm�rm� .

�21�

The equation for the density, keeping the second order terms
in V, is given by

��z1� = ��0��z1� +
V2

A
�

n


Sn
2� 
	n�x,y,z1�
2dxdy

� �
z0�zm�z1


	̄n�rm��0��rm�
2 +
2V2

A

�Re �
nn�

SnSn�� �0�*�x,y,z1�	n�x,y,z1�dxdy

� �
z0�zm�z1

	̄n�rm�	̄n��rm�	n��rm��0��rm� . �22�

For small �, this can be rewritten as

�n�z1� = �n
�0��z1� + �

n�

�n�
�0��z1�Pnn�� − �n

�0��z1�Pn� , �23�

where

Pnn� = 
Sn
2e−2�ntV
2

A
� 

n�x,y�
n��x,y�
2dxdy . �24�

This result contains both the scatter-out and the scatter-in
terms. For n�n�, Pnn� represents the scattering probability
�per unit distance� from the state n� to state n �the scatter-in
contribution� and is clearly positive definite. Taking the limit
of �→0, we obtain the master equation,

d�n�z�
dz

= − �2�n + Pn��n�z� + �
n��n

Pnn��n��z� , �25�

where we have redefined Pn as Pn− Pnn to absorb the n=n�
part of Pnn�. Equation �25� is the central result of this paper.
The right hand side contains three terms. The first term is the
ballistic contribution. The second term is the scatter-out term
due to diffuse scattering. Moreover, the third term is the
scatter-in term or the vertex corrections. Below, we will ap-
ply it to several problems and compare the results to experi-
ments.

IV. BARRIER THICKNESS DEPENDENCE WITH
DEFECT SCATTERING

The solution of Eq. �25� for a barrier of thickness t is

�n�z� = �
m

Anme−�mz, �26�

where �m are the eigenvalues of the matrix M whose ele-
ments are

Mnn� = �2�n + Pn��nn� − Pnn��1 − �nn�� . �27�

M is diagonalized by matrix A whose elements are Anm.
Suppose that �0 is the smallest eigenvalue. For thick bar-

riers and ��n−�0�z�1 for all n�0, the solution simplifies to

�n�z� = An0e−�0z. �28�

Applying first-order perturbation theory to Eq. �25�, we find
�n=2�n+ Pn and

An0 =
A00Pn0

�n − �0
. �29�

The scatter-out �Pn� contribution represents a simple renor-
malization of the decay wave vector from 2�n to �n. The
scatter-in term �vertex corrections� has a much more dra-
matic effect. Through Eq. �28�, it makes all states decay at
the same decay rate �0. For clean barriers, An0�A00.

A good test of our model is the comparison to the recent
measurements of tunneling resistance for single crystal
Fe /MgO /Fe magnetic tunnel junctions.6,10 These measure-
ments provide two sets of resistance for the same barrier
layer, RP when the moments of the two Fe electrodes are
aligned parallel �P� and RAP when they are antiparallel �AP�.
The parallel resistance RP is dominated by the majority �1
band.4 The conductance is proportional to the transmitted
charge density, �0�t�, at z= t. The thickness dependence of RP
is

RP = R0e�2�0+P0�t, �30�

where R0=h / �Ae2A00� with A being the area of the sample.
Because the Fe minority-spin channel does not have the �1
band at the Fermi energy, the dominant contribution to the
antiparallel resistance RAP is the vertex correction term to the
�2, �2�, and �5 bands4 due to the scattering from the �1
majority-spin band from the incident Fe electrode, repre-
sented by An0 in Eq. �29�, which yields

RAP =
h

Ae2

e�2�0+P0�t

�nvnAn0/v0
=

�R0

P
e�2�0+P0�t, �31�

where �=v0P /�n�0�vnPn0 / ��n−�0�� �with P=�nPn0� is as-
sumed to be a constant independent of the scattering rates
and vn is the z component of the velocity of band n inside the
electrodes. Taking the ratio of Eqs. �30� and �31�, we find
P=�RP /RAP or

RP

RAP
= �

n�0

vnPn0

v0��n − �0�
. �32�

This is a significant result because it directly links the TMR
�RAP /RP−1 for the optimistic definition� to the vertex cor-
rections due to Pn0. Because for a typical junction RP�RAP,
the key for raising TMR �reducing the ratio RP /RAP� is to
reduce the scattering rates Pn0.

By combining Eqs. �30� and �31�, we find
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ln�RP� − �tRP/RAP = ln�R0� + 2�0t . �33�

This leaves three adjustable parameters, �, �0, and R0, to fit
with experiments.

In Fig. 2, we fit Eq. �33� to the measurements of Refs. 6
and 10. For the data set from Ref. 6, the fitted parameters are
�0=2.97 nm−1, �=1.86 nm−1, and R0A=0.0025 � �m2. For
the data set from Ref. 10, because there is no curvature in the
original ln RP or ln RAP versus MgO thickness plot, there is
no constraint on the value of �. Therefore, we fix its value at
�=1.86 nm−1 as fitted from the data set of Ref. 6. Then, the
other parameters are fitted to be �0=2.83 nm−1 and R0A
=0.0067 � �m2. There are very good agreements in �0 be-
tween the two sets of data and with the first-principles value
�0=2.92 nm−1.

The scattering rates, P=�RP /RAP �scatter in� and P0=�0
−2�0 �scatter out�, are plotted in Fig. 3. To obtain �0 for each
sample, we first plot log�RPRAP� /2 versus t and find the lin-
ear fit,

1

2
ln�RPRAP� = �0t + L0, �34�

where the average decay rate for all data is found to be �0
=6.5 nm−1 for Ref. 6 and �0=6.13 nm−1 for Ref. 10. Then,
for each sample, we use �0t=ln�RPRAP� /2−L0 to find its �0.
Although in our model we do not require P= P0, from Fig. 3,
it is clear that the two scattering rates are essentially the
same. We also see that for barrier thickness less than 1.6 nm,
the scattering rate is very high. Above 1.6 nm, the scattering
rate is nearly a constant, at about 0.5 nm−1, which corre-
sponds to an effective scattering length of 2 nm. The samples
with a higher TMR �Ref. 10� have a correspondingly lower
scattering rate.

Now, we can give another reason why we think that the
agreement in Fig. 1 between the first-principles RP and ex-
periments is probably accidental. If Eq. �2� is the correct
expression for the resistance even in the presence of diffu-
sive scattering, then the relevant quantity in the exponential
should be 2�0. The difference between �0 and 2�0 would

simply arise from fitting a polynomial over a finite range
with an exponential and should have no physical meaning.
This difference, which defines P0, agrees nearly perfectly
with the scattering term P. It suggests that P0 reflects real
physics; thus, Eq. �2� is not a valid description of the tunnel-
ing resistance in the presence of diffusive scattering.

Oxygen vacancies in MgO are a major source of defect
scattering.16 The effect of defect scattering within the MgO
layer is modeled in the layer-KKR calculation with vacancies
on the oxygen sites varied between 0% and 1% by using the
coherent-potential approximation.17 The calculation yields an
increase of the decay wave vector by P0 /2=0.28 nm−1 when
the vacancy concentration reaches 0.5%. Therefore, a very
small amount of oxygen vacancies within the MgO layer can
account for the observed diffusive scattering effect.

V. INTERFERENCE OF EVANESCENT STATES

The second validation of our model is that the oscillatory
TMR due to the interference between evanescent states is
independent of the barrier thickness. This is the direct con-
sequence that all evanescent states should have the same
thickness dependence in the presence of nonspecular scatter-
ing and agrees with the measured oscillatory term in the
tunneling current.6,10 The existence of the interference be-
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FIG. 2. �Color online� Resistance of Fe /MgO /Fe junctions.
ln�RPA�−�tRP /RAP versus MgO thickness t. Experimental data are
from Ref. 6 �blue circle� and Ref. 10 �red square� and the fitted lines
are ln�R0A�+2�0t.
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FIG. 3. �Color online� Scattering rate of Fe /MgO /Fe junctions
using experimental data from Ref. 6 �blue circle� and Ref. 10 �red
square�. �a� The scatter-in rate, P=�RP /RAP. �b� The scatter-out
rate, P0=�0−2�0.
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tween evanescent states in magnetic tunnel junctions was
predicted by first-principles calculations.4 However, the
specular transmission calculated from first-principles pre-
dicts a much faster decay of the interference term than the
total current, which is in disagreement with the experiments.
Vertex corrections account for this discrepancy.

The interference occurs due to the presence of two tun-
neling states at certain k� at the Fermi energy. The two states
have complex wave vectors along the z direction, with dif-
ferent real parts and the same imaginary part,4 in the form
k1�2�=k1�2�

r + i�1, with 1 and 2 labeling the two states. In this
case, we consider both states together as a single effective
tunneling channel and label such a channel with a subscript
1. The electron density at position z from the linear combi-
nation of both states in the absence of nonspecular scattering
is

�1
�0��z� = 2e−2�1z�1 + � cos�qz + 	�� , �35�

where q=k1
r −k2

r , ��1 accounts for partial incoherence be-
tween the two wave functions, and 	 is the initial phase
difference between them. Accordingly, the ballistic term in
the master equation �Eq. �25�� for the density �1�z� is also
modified with an additional interference term,

d�1�z�
dz

= �− �1 −
q� sin�qz + 	�

1 + � cos�qz + 	���1�z� + P10�0�z� ,

�36�

where P10 is the scattering rate from the �1 state at k� =0
�labeled by the subscript 0� into the channel �1, and we have
neglected all other scatter-in terms. The main tunneling chan-
nel �0 is unaffected by the interference effect off the normal
direction, so �0 is still given by Eq. �28� with n=0. The
approximate solution to Eq. �36� is

�k�
�z� �

P10A00e
−�0z

�1 − �0
�1 + � cos�qz + 	 + 	��� , �37�

where �=�q /���1−�0�2+q2 and tan 	�=−q / ��1−�0�. Thus,
in the presence of nonspecular scattering, the magnitude of
the oscillatory interference term scales with the barrier thick-
ness at the same rate as the total current.

By using 66 048 k� points for the entire 2DBZ in the
layer-KKR calculation, we find that for a large portion of the
2DBZ in the minority-spin channel in the parallel configura-
tion, as well as both spin channels for the antiparallel con-
figuration, the transmission is an oscillatory function of the
barrier thickness. By calculating the complex band structure
of MgO�001� within the energy gap at the Fermi level of the
Fe electrode, we find for each k� point the wave vector q for
this oscillation. The average value for q is 7.0 nm−1. For the
entire 2DBZ, no values of q exceed 14 nm−1.

We now compare our calculation to the experiment. Due
to the small thickness range �about 1 nm� and large noise in
the experimental data, it is difficult to extract reliable value
of the oscillation period. Reference 10 used a fit with mul-
tiple periods, on top of a polynomial background to extract
two periods, 3.2 and 9.9 Å. Here, we extract the Fourier
components from their data by using the following proce-
dure. The data are first scaled by exp�−�0t� to remove the

exponential factor, then a constant is subtracted to obtain a
zero average. The resulting data are repeated to form a peri-
odic function with period Tm, where Tm is greater than the
thickness range of the original data. To avoid introducing an
artificial Fourier component due to Tm, we average over
many values of Tm, which is varied by inserting additional
data points with zero value at thicknesses outside the experi-
mental data range.

Figure 4 shows the Fourier transform of the data of Ref.
10 scaled by exp�−�0t� for both P and AP configurations. The
value for �0 is chosen from the fit in Fig. 2, �0=2�0+ P0
=6.13 nm−1. The Fourier peak at q=6.9 nm−1 in the AP spec-
trum is in excellent agreement with the calculated value of
q=7.0 nm−1. The period corresponding to this peak is 9.1 Å
in good agreement with 9.9 Å found by Ref. 10. However,
this peak is not robust against small variations of �0 and Tm.
The reason is that this period is almost the total range of the
data set �1.2 nm�. Thus, it is not surprising that the same
peak does not show up in the P spectrum.

The 3 Å period oscillation observed in Refs. 6 and 10
corresponds to the Fourier peaks at q=19.9 nm−1 �P� and q
=21.3 nm−1 �AP�. Noting that the first-principles calculation
does not predict any interference peaks near this value, we
argue that this period is a secondary effect. Indeed, in the AP
case, the two peaks at q=21.3 nm−1 and 35.2 nm−1 are al-
most exactly 2� /a�6.9 nm−1, with a=0.221 nm as the lat-
tice spacing of the MgO layers. Thus, these two peaks result
from the product of a q=6.9 nm−1 oscillatory factor and an
additional factor with a period of a single MgO monolayer.
The monolayer period oscillation most likely arises from the
interface roughness damping of the interference. One possi-
bility, for example, is that the interference effect can be sig-
nificantly damped near the step edges.

VI. DIFFUSE SCATTERING ON THE INTERFACE

Finally, we apply our model to another source of non-
specular scattering, which is the scattering of the transmitted
waves outside the barrier layer near the interface. In the case
of the AP alignment, the incident majority �1 wave function
has the largest electron density on the exit side of the inter-
face. This wave function continues to exponentially decay
into the minority-spin channel of the exit side electrode,
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which does not have a �1 band. Without nonspecular scatter-
ing, the �1 band does not contribute to the AP current, lead-
ing to the theoretically predicted TMR of over 6000%.4,18

The nonspecular scattering from the evanescent �1 band into
the Fe minority Bloch states can greatly increase the AP
current and reduce the TMR. By dropping the �n term on the
right hand side of Eq. �25�, we have

d�n�z�
dz

= Pn0� A00e
−�0t−2���z−t�, �38�

where �� is the decay rate of the evanescent �1 wave func-
tion in the minority channel and Pn0� is the scattering rate
from the �1 state into state n. By integrating, we find

�n�z → �� = � Pn0

�n − �0
+

Pn0�

2��
�A00e

−�0t. �39�

This leads to a modification of RAP in Eq. �31� due to Pn0� .
Because RP measured in experiments is mostly independent
of temperature, we can assume that for these samples, P in
Eq. �30� is independent of temperature. This is consistent
with the assumption that P is mostly due to scattering centers
such as oxygen vacancies inside the barrier layer. The tem-
perature dependence of RAP is only through Pn0� and yields

1

RAP�T�
=

1

RAP�0�
+

��T�
RP�0�

, �40�

where ��T�=�n�vnPn0� /2v0��� is a dimensionless effective
scattering rate. Because most scattering mechanisms increase
the scattering rate with the temperature, ��T� should increase
with the temperature, which causes a decrease of RAP with
the temperature. The temperature dependence of ��T� pro-
vides clues to the scattering mechanism near the interfaces.

A nearly temperature-independent RP and a decreasing
RAP with temperature are consistent with experiments.5,11 In
Fig. 5, we plot ��T� as a function of the temperature for two
junctions: a CoFe /MgO /CoFe junction5 and a Co /MgO /Co
junction.11 The scattering rate for both samples fit the follow-
ing temperature dependence:

��T� = a� T

T0 − T
�3/2

, �41�

with a=0.31 and T0=670 K for CoFe /MgO /CoFe and a
=0.024 and T0=520 K for Co /MgO /Co. We note that Ref.
19 obtained a T3/2 low temperature dependence of electron-
magnon scattering rate for a nearly half-metallic ferromag-
net, between a propagating state in one spin channel and a
localized state in the other. Here, the situation may be simi-
lar; thus the appearance of a T3/2 temperature dependence
may not be surprising. Complete analysis of this temperature
dependence is beyond the scope of this paper and will be
considered in future works.

An effective inverse scattering length can be calculated
from 2����T�. The layer-KKR calculation yields ��
=10.7 nm−1 for bcc Fe and ��=12.4 nm−1 for bcc Co, both
using the same lattice constant of 2.866 Å. By scaling the
scattering rates at room temperature in Fig. 5 by 2��, we find
an effective scattering rate of about 6 nm−1 for MgO /CoFe
interface and about 1 nm−1 for MgO /Co interface. These
values correspond to an effective mean free path of about
1.7 Å for MgO /CoFe interface and about 10 Å for MgO /Co
interface.

VII. CONCLUSION

In conclusion, we have derived a master equation �Eq.
�25�� to account for the vertex corrections due to diffusive
impurity scattering inside the barrier layer of a magnetic tun-
nel junction. Our model can also be used to study the effects
of nonspecular scattering in the interface regions. The model
yields excellent agreement with experiments in the barrier
thickness dependence of the resistance and oscillatory TMR.
The interface scattering has been analyzed to yield additional
insight in the experimental data, in particular, the tempera-
ture dependence of interface scattering.

It is worth emphasizing again the significance of Eq. �32�.
This result and the accompanying analysis of the experimen-
tal data indicate that the nonspecular scattering in the MgO
layer and at the interfaces has become the bottleneck for
improving the performance of the magnetic tunnel junctions.
Reducing this effect by eliminating lattice defects inside the
MgO layer, and improving the quality of the interfaces, is the
key for achieving giant TMR.
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